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We propose an approximate method for the investigation of the stability of sys- 

tems of linear equations with stationary random coefficients, based on the use 
of the method of perturbations. The problem is reduced to the investigation of 
the stability of a system of finite-difference equations whose coefficients are de- 

termined by the spectral densities of the random parameters. Stability conditions 

for systems of linear equations with random coefficients have been considered 

by many authors [l - 51. For systems whose coefficients are Gaussian white noises, 

exact stability criteria have been obtained [l]. Approximate conditions based 
on the use of asymptotic methods have been found in a number of papers [3, 43 
principally for second-order systems with small stationary perturbations of the 

parameters. The application of these same methods to higher-order systems 
leads to complicated calculations. 

1. We consider the nth order equation 

y’ = [C + pG (t) - p?B,l \ (1.1) 

Here C is a real IZ j: rz matrix with eigenvalues h, = ik, (s = 1,. . . , 2F), Reh,< 

< 0 (S 2 2F + I,..., n);we assume that all the k, are distinct (and, obviously, pair- 
wise opposite). The elements of the matrix G (t) are centered stationary random proc- 

esses, B, is a real matrix, p is a small parameter. 



If h, (m = l,..., n) are the linearly independent eigenvectors of matrix C, then the 

transformation s = I/-’ ),whereI/ (/ II,..... II,, 11. reduces system (1.1) to the form 

x’ I:: 1 A + }ll’ (i) - }12Bl s (1.2) 
where A = [I k,i,. . . , kg, i, &t+1 . . . , ?L, /[ is a diagonal matrix and 1’ = II-’ (~‘lf and 

H = H-iBIH are complex matrices. Using the ideas of the method of perturbations, 

we seek the solution of Eq. (1.2) in the series form 

x SO i_‘Xl \l$ -:- . . . (t A 

under the initial conditions x,) (0) _ x (0) v. s, (0) 0 (j /_' 0). by assuming 

that for each realization of 1’ (t) this series converges on some interval 10% T1, where 

T- IL-]. Substituting (1.3) into (1.2) and separating out the terms with different powers 

of I’, we obtain a system of recurrence equations 

x0’ = 11x0, St’ = .,1x, j- I’(L) S,). s,’ 7 .1x, I’ (t) Xl - fix,, (l.‘I) 

solving which we find 
x 0 = Pc , 

We shall judge the stability of system (1.2) from the variation of the mean value of 

the square of the norm of x (t),<x (t) 2 (t)>. h w ere the bar on top denotes the conjugate 

quantity. Since 

:x (t) x (t)’ =: i (.1‘, (t) .zi (t); (1.6) 
S=l 

the problem is reduced to computing the mean-square values of I.c, (l) 1, From (1.3) we 
find /z, 1s~ = Joi.Los: -!- 11 ((.ri&\ I :.r,,..T,.:) ‘- p~(~xLJ,.;’ 

(- (5‘Jos) !~ ;.q,J,,<:) - (1.7) 
Let the components C, of the initial conditions vector o be random variables satisfying 
the conditions 

:c,c,,: - _/c* I?> CL,,, ( ,nLk (1) c,: I:?: 0 (i, I;. s. ,,L = 1,. ., III (1.3) 

where s,,,, is the Kronecker symbol, plh- (1) are the elements of matrix f’ (1). In what 
follows, when computing (x (t) 5 (t), we shall carry out the averaging not only over 
the realizations of f’ (t) but also over the set of initial conditions. If here the quantity 

<X (t) i (l))remains bounded as 1 + co, whatever be the set c, satisfying conditions 
(1. B), we take system (1.2) as being stable. By computing the terms occurring in (1.7) 
and taking (1. 8) into account, we obtain 

<zos (T) zos (T)) = (eh~*C,eAJC,) = ( 1 c, I”) t?2RrAST ==’ c2RcAsT (x, (O)z, (0)) (1.9) 
T n 

:cos (T) Z,, (T)) = ,\’ e’s* ehs(*-r’ j e’s’ (ps,,, (T) c,;,) dt -_ 0 (1.10) 
n=1 
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n T+ 

<J*s (T) To, (T)) = eZRehsT <I cs 12) { 2 JJe@m 
rn=lO 0 

-AJ(T-xl) K;,(t-q) dz, ds-b,,T} = 

Here 

K,, (7) = ‘p,, (t) p,, (t - .t)> = & 1 S,, (0) eior do 
--cc 
m 

&, (t - zl) = (psm (z) pms (t,)) = & S Sk (0) eio(r+) dw 
-co 

Suppose that the relation h, - h, = ik,, , where k,, is a real number, is fulfilled 
for some s and m Then singularities exist in the integrauds in (1.11) and (1.12), lead- 
ing when integrating to the appearance of terms proportional to T. To separate these 

terms we take it that T > T, (T, is the correlation time of the processes psm (t)); 

then the relations S,, (co) z S,, (k,,) = const, S’,, (0) z S’,, (k,,) = const 
are valid for S,, (0) and S’,, (0) in the ranges PC,, - UT,, k,, + l/T,L 
Taking this into account, we obtain 

& 1 s,, (@) 1 &n-hs+i“‘)T - 1 12 1 k,, - w I2 do = 

(1.13) 
1 O” 

n c 1 - cos (ksm -co) T 
=- do = 

2x 

sSVl(0) (k 

677% 
- co)2 

&,+W’I 

= f s,, (k,,) 5 

I( ,,--l/T1 

’ - ;;;;k:W;o) T do + ‘~sm (T) = T&n (ks,,,) + %m (T) 

Here %, (T) and %, (T) are functions which remain bounded as T 3 00. Analogously, 

for h, - A,,, = ik,,we obtain 

1 m (1.14) 
- c 2n , &, (w) I 

e@m-~s+~W- _ I T - 
(h, - h, + io)” I, - h, + io 

--cm I 
do = f J’bm (k,,) + rlsm CT) 

where qsm (T) is a bounded function. 
We substitute (1.13) and (1.14) into (1.11) and (1.12) and we separate the terms which 

increase unboundedly as T grows. It is obvious that such terms may occur only in expre- 

ssions corresponding to s < 2r. When s > 2r the factor e sKehsT eliminates the poss- 

ibility of unbounded growth since Reh, < 0. For s Q 2r only the terms corresponding 
to m < 2r may be unbounded, since the difference h, - h,cannot be pure imaginary 
when rn > 2r, S < 2r, Taking this into consideration and substituting (1. 9) - (1.12) 

into (1.7), for s < 2r (k,, = k, - k,,) we obtain 

(z, (T) 3, (T)) = (5, (0) 2, (9)) + p2T { i [Ss, (ks - km) (3, (0) %n (0): i- 
m=1 



where 0, (T) is a bounded function, and the terms discarded have an order of smallness 
higher than the second. If T - p-l, then pzT - p1 and expression (1.5) may be written 
to within terms of the order of p2 in the form 

v (T) = \’ (0) -}- p2TI’v (0) (1.16) 

Here V (ff is a 2r- dimensional vector with components ( /zrn (t) is>, ]r is a 2r X 2r 
matrix with elements 

We can convince ourselves that under the assumptions made the quantities (X8 (T) 

x, (T)) for s # m ,and (J+~ (T) z, (T) j are small quantities of the order of p”. If 

now in analogous fashion we express v (2T) in terms of v (T), then in expressions (1.10) 

- (1.12) these quantities yield corrections of the order of p3 and higher, which does 
not affect the final results. Thus, for integers p the quantities v (PT) and v [(p - 1) 
T] are connected by the finite-difference relations 

v (PT) = (E + $Tl‘) v I(p - i) 7’1 (1.18) 

where ,!$ is the unit matrix. 
Since the quantities ( IL, (T) {“> are bounded for s > 2r , a sufficient condition for 

the boundedness of ( }x (T) 12) is the boundedness of the solutions of system (1.18) for 

any v (0). For this, as is well known, it is sufficient that the roots of the equation 

det IE + p2 Tl? - Eql = 0 (1.19) 

satisfy the condition 1~ 1 < 1 (s = 1,. . . , at-). Hence we can obtain an equivalent (for 
small El) condition, which is that the equation 

det (r - I?p) = 0 (1.20) 

must have all its roots with negative real parts. Thus, the investigation of the stability 
of system (1.2) is reduced to the investigation of the roots of the characteristic equation 
(I. 20). It is obvious that by virtue of the boundedness of matrix H-’ the stability con- 

ditions for systems (1.2) and (1.1) coincide. 

2. Examples. 1. Let us investigate the stability of the second-order system 

2” -{- “t+l”.Lx’ + I>“.z -i_ [“V(l) Lc’ i_ ut (i) Cr == U (‘.I) 

Writing it in the form of system (1.1) we obtain 

We see that in the given case 

Transforming the system to form (1.2) we have 

i 

II 

- E; it) - ikv (t), 
A= P (t) -7 2ki 

5 (0 + ikv (t). 

Further we find 
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su (0) = s22 (0) = & s< (0) + $ S” (0) - & Im SE” (0) 

He XII’ (0) = Re Sd (0) = - -& sE co) + $ sv (@j 

Re 8~2’ (4 = -& SC (0) + $ S, (0) - & Im SiV (w) 

Re S?I’ (0) = & S5 (61) + $ sy (0) + -& Im SC, (0) 

where SE (o), S, (o), St, (0) are the spectral densities of & (t), Y (t) and their mutual 
spectral density. From formulas (1.17) we find 

Tll = Tzz = f S” (0) + $ s, (3 + &-St (2k) - & Im SEV (2k) - 2n 

Tl.2 = Ta1 = + Sg (Zk) + + S, (24 - & Im SEV (2k) 

By setting up the usual Hurwitz conditions for Eq. (1.20). we arrive at the following 
stability condition: 

n >$ s, (0) + -&” (24 + 4:. L St (24 - + Im Sky (2k) (2.2) 

For v = 0 and S, (0) s S,, this condition yields n > S,j4ka, which coincides with the 
well-known stability condition for the case when the random parameter is a “white 

noise. ” 

2. Let us consider the system of two second-order equations 

zi” + k12z1 + ~L”~IZI’ -j- pf (t) (a~lzt+ mazz) = 0 

(2.3) 
zA” + kz”zz +p2p~zz’ + PE (t) (mzl + a,zzz) = 0 

Writing system (2.3) as four first-order equations and transforming matrix C to diagonal 

form, we obtain 
ikl 00 0 

0 -ikl 0 0 
A= o 0 ikl 0 

0 0 0 - iki 

B=+ 

;I 

II adz allkz a& a12kz 

p(t) = _L&_ - 
a llkz - a11 k ‘L -apz 2 k -u& 

1’ J 

I 

mkl aalkl a22kl aAzkl 

- auk1 - aalkl - afakl - al?kl 

In the given case the spectral densities S,, (0) are 1 
allP 

Sr2 = ST2 = - S,z = - s21= 4 k-L.’ SE 

1 
S&A = 4 

al2a21 
,y,s = SSlZ 5.24 = 2742 = - s,s = - St1 = - s24 = - _z__--sg 

iilk 

I ad 
-- S33=S4,=-Ss31=-S43= 4 kit Sk 

Sbm (0) = - S,, (0) 



The elements of the matrix f defined by formulas (1.17) take the form: 
CL,,2 Ull(l21 >, . / 711 = I:. = li, ‘j.5 (21 8) + ‘,*,,,h’~ ___ (si+ - ‘si-) - 3, 

al! 
b3 = 744 = -&- SE(2h_+~ e (SC' - SC-)_ j2 

al,') 

712 = T21= -F s'< (2/f,), 
1 al2') 

734 = r43.= - 4 jcz'S,(L'hJ) 

1 aua2I 

"fl4 == 74, = Tzs ;- 731 = - - 
4 hk~ %+ 

Sk+ = st(kl+ A,), s',- =: St(kl ~ - kg) = S, (k2 - kl) 

After manipulations matrix r is reduced to the form 

1 I-1 
I’= o 

r? 

;1 1 J‘3 

where rI, r2, rs are second-order square matrices. Here Eq. (1.20) splits up into the 

two equations 
det (r, - Ep) = 0, det (r, - Ep)=O 

The elements of matrices rl and rs are, respectively, 

1(rj _ alAaL 
11 4k k. 1 2 ($+ - SF-) - &t . 

“(ii’ = E (SE+ - St-) - 3; 

7;;) = $’ = - s (SE+ - SC) 

“,Cj) - ‘q$- SE (2k2) + s (s:+ -SE-) - fh 
'11 - 2 

7;;) z f +$-S; (2kl)+ E 
1 

(St-t - SE, -31 

71‘2 - 
(3) = .+o = z vi' + St-) 

Writing down the Hurwitz conditions, we obtain the following stability conditions: 

P,>$ St (2/Q) + E (St+ - St-) (2.4) 

aTA- 
PL > m St (2U + * (SE+ - St-) 

,- 

L 
/31 - s Sg (2k1) - * (Sk+ - S-c-) 

I 
x 

i 

f& 
.> .z 

x :% - TiT Sg (2M - 4kr ,k_ a12a21 (SC+ - s,_-) 
I 

> ;;;f;) (SC+ - SC-)’ 

3. Let us consider an automatic control system containing in the loop an element 

with a random gain h’ [I + frq (t)], where n is a centered stationary random process. 

Having expanded the rransfer function M/ (p) into partial functions, we can write the 

equations of motion of the system in the form 

(Z.5) 

Let us assume that among the roots of the characteristic equation there is one pair of 

complex roots with a small negative real part 
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Fig. 1. 

The remaining roots satisfy the conditions Re h, < 0 (s= 

= (..., 3 n) and, moreover, 1 Re k, 1 a p%. Obviously, 
here Br = Bi. Introducing the new variables 

we reduce Eq. (2.5) to the form 
n 

(2.7) 

or, with due regard to (2.6). 

Determining the elements of matrix I’,we find 

r11- Taa = 2a*S,, (0) +(aa + b2) S,,(2k)- 2n 

Tla = T%= (aa + ba ) S, (2k) a = Re Bl, b=ImBi 

Hence we obtain the stability condition 

n > aaS,, (9) + (aa + b2) S,(2k) 
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